

6.2 f Cassowary Specific Revegetation - A Cyclone Tolerant Orchard Ella Bay



## **Cassowary Specific Revegetation -**

## A Cyclone Tolerant Orchard

## At Ella Bay

October 2010 Revision 1





## **Executive Summary**

Cyclone events are one of the major impacts on the survival of the endangered Southern Cassowary. In the aftermath of Cyclone Larry the immediate loss of food from fruit drop and the structural damage to Cassowary habitat had a significant impact on cassowary mortality. Many birds starved to death, while others were aided by widespread feeding stations while handfeeding resulted in some birds becoming nuisances to the local residents particularly around Mission Beach. Cassowaries entering into built-up areas increased their risk of mortality from interaction with vehicles and dogs.

The proponent engineered and trialled a revegetation strategy to establish a specialised protected fruit orchard that would allow early post cyclone access for cassowaries to fruit with the goal of enabling cassowary survival.

Specific species selection was involved and the Maximum Diversity Method was utilised. Species were recorded as being tolerant to cyclonic conditions and also to be identified as cassowary food source trees. These were planted in rows to act as a windbreak and under planted with cassowary food source smaller trees and shrubs.

There is limited data available on revegetation for the coastal plains, and with the costly management of weed control with Maximum Diversity planting being a significant problem; a further strategy aim was to establish a better managed low cost base revegetation project.

i



## Contents

| 1.   | Intro | duc   | tion                                                                 | .1  |
|------|-------|-------|----------------------------------------------------------------------|-----|
|      | 1.1   | Incre | ease existing lowland rainforest habitat                             | 1   |
|      | 1.2   | Prov  | ide an all year round supply of cassowary food                       | 1   |
|      | 1.3   | Desi  | gn the plantings to be as cyclone tolerant                           | 1   |
|      | 1.4   | Desi  | gn a more cost effective revegetation strategy                       | 2   |
|      | 1.5   | Deve  | elop a natural looking planting method                               | 2   |
| 2.   | Loca  | tion  |                                                                      | .3  |
| 3.   | Cycle | one   | Tolerant Species Selection                                           | .5  |
|      | 3.1   | Spe   | cies Selection                                                       | 6   |
|      |       | 3.1.1 | Wind Break Tree Species >30m                                         | . 6 |
|      |       | 3.1.2 | Cassowary Fruiting Species >15m <30m                                 | . 7 |
|      |       | 3.1.3 | Edge Closure trees and shrubs <15m                                   | . 9 |
| 4.   | Plant | ting  | Strategy, Pattern and Densities                                      | 10  |
|      |       | 4.1.1 | Planting Strategy                                                    | 10  |
|      | 4.2   | Plan  | ting Pattern                                                         | 10  |
|      |       | 4.2.1 | Planting Pattern North-West Block                                    | 11  |
|      |       | 4.2.2 | Planting Pattern Hidden Paddock                                      | 11  |
|      | 4.3   | Plan  | ting Process                                                         | 12  |
| 5.   | Reve  | geta  | ation Risks                                                          | 17  |
|      | 5.1   | Tree  | Growth Performance                                                   | 17  |
|      |       | 5.1.1 | High wind event                                                      | 17  |
|      |       | 5.1.2 | Dry weather                                                          | 18  |
|      |       | 5.1.3 | Wallabies                                                            | 18  |
|      |       | 5.1.4 | Feral Pigs, Caterpillars, Insects and Other                          | 18  |
|      | 5.2   | Rep   | acement Plantings                                                    | 19  |
|      |       | 5.2.1 | Natural Recruitment                                                  | 19  |
|      |       | -     | one Yasi                                                             |     |
| 6.   | Cost  | ana   | lysis                                                                | 21  |
| Арре | endix | 1.    | List and Quantity of Initial Species Planted                         | 24  |
| Арре | endix |       | North West Revegetation Strategy – Details for marking<br>up paddock | 25  |
| Арре | endix | 3.    | Seed collection table                                                | 27  |
|      |       |       |                                                                      |     |



#### 1. Introduction

This report describes the establishment of a cyclone tolerant cassowary fruit orchard located on the perimeter of the western boundary of Ella Bay property adjacent to the Ella Bay National Park. The aims of the project were to

- Increase existing lowland rainforest habitat for the local cassowary population;
- Provide an all year round supply of cassowary food through a variety of native fruiting plants known to fruit throughout the year;
- Design the plantings to be as cyclone tolerant as possible using known "cyclone hardy", wind resistant species to provide shelter for lesser wind resistant species;
- Design a more cost effective revegetation strategy without sacrificing biodiversity and species abundance; and
- Develop a natural looking planting method that is not in rows etc whilst still allowing access between trees for weed maintenance.

#### 1.1 Increase existing lowland rainforest habitat

Much of the Southern cassowary's former lowland rainforest habitat has in relatively recent history been cleared for mainly agricultural purposes through much of the wet tropics. In the past century this has also occurred at Ella bay where clearing took place to grow a variety of crops and to graze cattle near the turn of the century.

The loss of lowland rainforest has significantly reduced the abundance and diversity of fruit species previously available to cassowaries.

Cassowaries typically forage through a range of different topographical habitats and utilise a wide range of native fruit producing plants which grow in different areas. However many of the plants which provide the largest and most abundant fruit grow on the low plains where the soils are often richer and more fertile than the adjacent slopes.

This project aims to grow a diverse range of native lowland fruit producing tree species to help increase the available food resources for the cassowaries living in the forests surrounding the proposed development site to ensure the ongoing survival of the birds in the area.

#### **1.2 Provide an all year round supply of cassowary food**

Plant selection was based on species native to the remnant lowland rainforests on and surrounding the site as well as their utilization by cassowaries. As great emphasis for this project lies in providing a fruit supply for the cassowaries throughout the year. Trees were selected based on their fruiting seasons and this ensures that fruit will be available to the birds year round.

#### **1.3** Design the plantings to be as cyclone tolerant

Cyclone events are one of the major impacts on the survival of the endangered Southern Cassowary. In the aftermath of Cyclone Larry the immediate loss of food from fruit drop and the structural damage to Cassowary habitat had a significant impact on cassowary mortality. Many birds starved to death, while others were aided by widespread feeding stations while handfeeding resulted in some birds becoming nuisances to the local residents especially around Mission Beach. Cassowaries entering into built-up areas increased in search of hand-outs increased their risk of mortality from interaction with vehicles and dogs.

Queensland Parks and Wildlife Service (QPWS) confirmed that 23 cassowaries had been killed since Cyclone Larry, most of them hit by cars. A number of the problem birds were anaesthetised and relocated to the western less-cyclone ravaged areas. The relocation was a last resort action as the territorial nature and home range instinct of the cassowary would have meant a difficult if not impossible existence.

1



A number of feeding stations were established around the Flying Fish Point area and along Ella Bay Road. It is suspected that the combination of the feeding station and hand feeding of the cassowaries has habitualised the cassowaries to the road and surrounding reserve areas creating a further ongoing unintended mortality risk with vehicles and dogs.

The aim is to establish a specialised protected fruit orchard that would allow early post cyclone access for cassowaries to fruit with the goal of enabling cassowary survival. It is not expected that this orchard will be able to withstand a category 5 cyclone such as cyclone Larry or Yasi however using the knowledge from these events should enable better survival after all cyclone events.

The strategy relies on reports of certain species of tall fruiting trees surviving Cyclone Larry relatively unscathed (Curran et al., 2008) (Tucker et al., 2006) (Turton et al., 2008) (Jackes., 2008). The cyclone tolerant cassowary food source trees would be planted in rows to act as a windbreak and then under planted with smaller cassowary food source trees and shrubs. The surface profile of the rows of taller trees would be sealed on the windward side by dense rows of shrubs to reduce edge effect and to improve the apparent wind profile to reduce wind eddying under the tree canopy that often results in tree damage and fall during high wind events.

The trees and shrubs planted between the rows of protecting trees would be selected as species that are able to sustain a cassowary's diet in the post-cyclone season (February to July).

#### **1.4** Design a more cost effective revegetation strategy

A further aim was to establish a better managed low cost base revegetation. Revegetation in the Wet Tropics region has been characterised by high cost and poor success rate (Cantrell). The trials have mostly been at high elevation and there is limited data available for the coastal plains. Additionally, revegetation has evolved into a system of minimal species selection, primarily pioneer 'framework' species to achieve canopy cover as early as possible and minimise costs. This has been referred to as the Framework Species Method versus the Maximum Diversity Method (Goosem, S., Tucker, N., 1995) used in this trial.

The limited species selection and minimal cassowary fruiting trees suitable for Framework Species Method would result in insufficient availability of cassowary fruit post a cyclone event. The trial will require trees that have a variety fruiting periods and resilience to survive the uncertainties of cyclone intensity and timing.

The Maximum Diversity Method of planting will provide the best chance of availability of fruiting post a cyclone event but the downside will be that the trees will be slower to canopy closure; there will be holes in the canopy for many years and weed control will be an ongoing problem. It will not provide an even look for many years but once established will maximise the trial and evaluation of species suitability. The management of weed control with Maximum Diversity planting will become the dominant problem on an ongoing basis.

#### **1.5** Develop a natural looking planting method.

A further goal for development and resort requirement is for the planting to be aesthetically pleasing in that the planting will not look like a plantation; that there are no straight lines and preferably a viewer is not able to look through the "rows" and see row lines to the ends.

The development of the methodology required evaluation of;

- Location;
- Research into tall protective cyclone tolerant species;
- Selection of suitable, indigenous and commercially available species;
- Defining a planting strategy, pattern and densities;
- Planting method;
- Protection and weed control; and
- Monitoring for fruit development and cassowary usage.



#### 2. Location

Two locations were evaluated as being suitable; both provided some topographic protection from proximity to the base of the Graham range to the trees and would be away from major population centres within the resort and development area.

- Southern boundary this is a 100m wide buffer zone between the National Park and the southern boundary of the South West Residential Precinct.
- North West- this location provided two areas one referred to as the Hidden Paddock which was located within the East West conservation corridor and between two creeks and the North West boundary with the National Park. The North West cleared area also transgressed into the Ella Bay National Park by some 30m which was included in the revegetation area



Figure 2:1 The two revegetation sites near the north-west corner of the Ella Bay site

The North West boundary (4.12 hectares) was chosen as the trial revegetation site due to wildlife monitoring cameras showing this as a frequently visited area by a number of birds male (and chicks), female and sub-adults. The creek crossing into the Hidden Paddock provided the most frequent monitoring camera images of birds on Ella Bay property.

The combination of the revegetation site and a hotspot of cassowary activity also would make this location an ideal site for a research blind to study cassowary movement and usage of the revegetation site. This location has been identified in the Masterplan for a future research station.



The North West boundary comprised two cleared areas of roughly 2 hectares each. The sites were relatively flat with the hidden paddock comprising small undulations in the far west boundary (0.1 ha). The hidden paddock was heavily infested with weeds predominately Sicklepod (*Senna obtusifolia*) over the majority of the internal flat area (1.5 ha) with Giant Bramble (*Rubus alceifolius*) on the perimeter to a width of 10 to 20m from the riparian vegetation. While the North-West block was grassed with exotic Creeping Signal Grass (*Brachiaria humidicola*).

The riparian vegetation in this area is narrow approximately 20 to 40m width, extremely susceptible to wind damage due to the open paddocks on either side. This area suffered extreme wind damage with leaf breakage resulting in defoliation from susceptible trees above the high bank and tree snap or uprooting of some species during Cyclone Yasi (Category 5). Widening this section of thin riparian vegetation will also provide protection to the existing vegetation and significantly improve existing edge effects.



#### 3. Cyclone Tolerant Species Selection

The selection of what has been termed here as cyclone tolerant species is a very subjective assessment. Some species survive by having a low tolerance to wind; loosing all leaves during low category cyclones whereas other species survive with minor leaf loss relying on trunk and root system integrity. For these species in an extreme wind event the prior ground conditions whether water logged or dry determine whether the tree survives without trunk snap or uprooting.

The aim of the strategy is to create an area of vegetation that in high wind events should fair better than its surrounds; *not* to attempt to design an area that is impervious to the effects of a Category 5 cyclone.

Through this protection it is anticipated that vegetation will manage to retain some level of fruiton-branch, particularly on the smaller, protected shrubs i.e. lower fruit drop; and also endure lesser damage affording a quicker recovery time (and potentially re-fruit).

The data generated post Cyclone Larry (Turton 2008, Metcalfe et al, 2008,) on cyclone tolerance was also varied with reports of some species surviving relatively unscathed in some areas whereas due to possible different wind shear events were broken off or uprooted in others. Metcalfe reports that the physical environment of the trees also determined the damage from cyclones and is impacted by:

- Local wind velocity intensity of the cyclone and proximity to the eye;
- Local wind shear in the immediate area local exposure and wind shielding topography;
- Soil type Colluvial, basalt, sand etc
- Soil moisture and degree of saturation pre-cyclone rainfall;
- Edge effects and width of vegetation the apparent vegetation density.

Another physical difference to consider is the difference in root system development with the coastal constant heavy rain which will induce the development of a shallow and very spread root system.

The resistance to cyclone damage was found to be related to wood density in terms mechanical strength in a study of six species by Curran (Curran, 2008), where as resilience of recovery and increase in biomass post cyclone recovery was found to be negatively related to wood density. That is the trees with lower wood density re-sprouted or coppiced faster and increased biomass quicker than the trees that were potentially more resistant with higher wood density but were damaged.

More general guidelines of cyclone tolerant trees are provided by (Calvert G., 2011; Jackes, B., 2008):

- Species with thin leaves that allowed the wind to pass through;
- Flexible stems as found in palms;
- Well-developed root system with a good taproot or secondary aerial roots like some figs;
- Ease of defoliation, i.e. the ability to lose leaves quickly and so offer little resistance to the wind;
- Open branch systems allow the wind to pass through;
- Lack of a dense top heavy canopy or crown; and
- Healthy trees, vigorous growth. Slow growing trees are often the best.

The problem with the above analysis is that most cyclone tolerant trees and shrubs will make poor wind breaks due to the early leaf shedding, thin leaves or open branch structure. The most suitable, are trees with well developed root systems or are flexible stemmed. Additionally the focus has not been on which species fruited earliest after the cyclone or are sufficiently unaffected that the species continues with its normal fruiting cycle.

The conclusion was that the above observations of cyclone tolerance could provide a guide in predicting which trees would perform best in terms survival but little in terms of the suitability for



a windbreak or fastest recovery to fruiting following a cyclone. The decision was made to plant those trees which in general performed suitably and monitor.

The selection of a number of cyclone tolerant tree species was also made on local observation, plant availability and evaluation to the general guidelines.

The ultimate goal in this revegetation trial is to ascertain whether revegetation can be selectively chosen to enhance cassowary food source post a cyclone, therefore other aspects of fruiting period and recovery to early fruiting are also important. These observations have not been reported in the post Cyclone Larry analysis.

#### 3.1 Species Selection

The species selection was divided in to two parts; species that were tall trees that were "cyclone tolerant" and preferably cassowary fruit sources to provide the shelter and other species that were cassowary "fruit sources" that fruited in the late wet season or early dry season.

Along the edges of the replanting area, a strip of denser species will be planted to ameliorate the 'edge effect'. It has been suggested that the disadvantages of narrow corridors with large edge to area ratios can sometimes be reduced if species with dense canopies that persist to ground level are used to 'seal' the boundary (Tucker and Murphy 1997, Pullar & Lamb 2008). Species suitable for this edge include sun tolerant small trees, shrubs and herbaceous plants and the cyclone tolerant palms. The spacing density for these edge plantings will be similar to natural rainforest in order to rapidly seal edges to reduce weed invasion and wind as well as light penetration.

The cassowary fruit source species were divided into height range:

- >30m Lowland rainforest species, cyclone tolerant, preferably "cassowary fruit sources" that grow over 30m tall;
- 15 30m Lowland rainforest species, preferably cyclone tolerant, "cassowary fruit source" fruiting (March to November), that grow between 15 and 30 m tall; and
- <15m Lowland rainforest species; preferably cyclone tolerant, "cassowary fruit source", shrub species that grow less than 15m, dense foliage trees and palms that seal the edge.

In all the species selection process was required to cross reference:

- Site specific vegetation surveys for endemic species (3D 2007, 2008);
- Cassowary food source (Bradford et al, 2008; Cooper, 1953-; Beasley, 2008; Nicholson & Nicholson 2007);
- Fruiting period (Cooper, 1953-; Beasley, 2008; Nicholson & Nicholson 2007);
- Cyclone tolerance (Calvert, et al.2011; Curran et al.,2008; Tucker et al., 2006; Turton et al., 2008; Jackes., 2008)
- Seed stock that had been provided from Ella Bay (Appendix C);
- The tube stock available at the local Council nursery in Innisfail and Tully (to ensure local provenance); and
- Tree height

Approximately 50 species of cassowary fruit source trees were chosen in the planting mix to maximise the variety of species fruiting times and provide diversity and promote resilience to environmental threats.

#### 3.1.1 Wind Break Tree Species >30m

Selection of windbreak trees relied on reports post Cyclone Larry (Curran et al., 2008) (Tucker et al., 2006) (Turton et al., 2008) (Jackes., 2008) and site observation. The selection process was further restricted or substituted due to the lack of availability of sufficient quantities of certain species. The emphasis in species selection was a preference to cassowary fruiting



species. The 20 species selected below will provide a variation in growth rates and resilience versus resistance.

| Species Name                              | Common Name              | Ella<br>Bay | Form | Height<br>(m) | Fruit         | Cass<br>Fruit<br>Source | Cyclone Tolerance                  |
|-------------------------------------------|--------------------------|-------------|------|---------------|---------------|-------------------------|------------------------------------|
| Archontophoenix<br>alexandrae             | Alexander Palm           | Y           | Palm | 30            | June-Sept     | Y                       | flexible                           |
| Bischofia javanica                        | Java Cedar               |             | Tree | 30            | feb-jun       |                         | Unknown low density                |
| Carallia brachiata                        | Corky Bark               | Y           | Tree | 30            | Sept- Nov     | Y                       | Tolerant of strong winds.          |
| Cerbera florbunda                         | Cassowary plum           | Y           | Tree | 30            | Jan- Oct      | Y                       | early post cylone fruit            |
| Endiandra<br>montana                      | Brown Walnut             | Y           | Tree | 30            | April- Dec    | Y                       | Unknown                            |
| Ficus variegata                           | Variegated fig           | Y           | Tree | 30            | Any<br>month  | Y                       | loss of limbs                      |
| Gmelina<br>dalrympleana                   | White Beech              | Y           | Tree | 30            | Jan-Jul       | Y                       | resistant little damage            |
| Syzygium<br>angophoroides                 | Yarrabah Satinash        |             | Tree | 30            | sep-feb       | Y                       | loss of limbs                      |
| Syzygium<br>Iuehmannii                    | Cherry Satinash          | Y           | Tree | 30            | Nov-<br>March | Y                       | loss of few limbs, leaves          |
| Acmena<br>graveolens                      | Cassowary Satinash       |             | Tree | 35            | apr-nov       | Y                       | tolerance                          |
| Acmena<br>hemilampra subsp.<br>hemilampra | Broad leaf Lilly Pilly   | Y           | Tree | 35            | Jan-Sep       | Y                       | loss of limbs                      |
| Beilschmiedia<br>obtusifolia              | Blush Walnut             | Y           | Tree | 35            | July- Nov     |                         | Site obs. loss of limbs            |
| Cinnamomum<br>Iaubatii                    | Pepperwood               |             | Tree | 35            | jul-nov       | Y                       | few leaves                         |
| Elaeocarpus<br>grandis                    | Blue Quandong            | Y           | Tree | 35            | Any<br>month  | Y                       | loss of leaves                     |
| Ficus racemosa                            | Cluster Fig              |             | Tree | 35            | May- Feb      |                         | good loss of limbs                 |
| Flindersia<br>bourjottiana                | Queensland Silver<br>Ash | Y           | Tree | 35            | Aug- Jan      | Y                       | very resistant                     |
| Syzygium kuranda                          | Kuranda Satinash         | Y           | Tree | 35            | jun-mar       | Y                       | loss of limbs                      |
| Brachychiton<br>acerifolius               | Flame Tree               | Y           | Tree | 45            | Any<br>month  |                         | small leaf loss                    |
| Melia azaderach                           | White Cedar              | Y           | Tree | 45            | mar-jun       |                         | Fast resprout - moderate<br>damage |
| Nauclea orientalis                        | Leichardt Pine           | Y           | Tree | 45            | Dec- July     | Y                       | loss of limbs, leaves              |

#### 3.1.2 Cassowary Fruiting Species >15m <30m

Less information on tree performance was available for this species selection and some of the selections were made on a generic basis as well as post Cyclone Larry (Curran et al., 2008) (Tucker et al., 2006) (Turton et al., 2008) (Jackes., 2008) and site observation.

The selection process was further restricted or substituted due to the lack of availability of sufficient quantities of certain species. The emphasis in species selection was a preference to cassowary fruiting species however some pioneer trees were chosen for speed to canopy closure.



| Species Name         | Common Name            | Ella<br>Bay | Form     | Height<br>(m) | Fruit         | Cass<br>Fruit<br>Source | Cyclone Tolerance         |
|----------------------|------------------------|-------------|----------|---------------|---------------|-------------------------|---------------------------|
| Syzygium wilsonii    | Powderpuff Lilly Pilly |             | Shrub    | 6             | oct-jan       | Y                       | little damage             |
| Phaleria             |                        | Y           | Shrub    | 10            |               | Y                       |                           |
| clerodendron         | Scented Daphne         | T           | Shirub   | 10            | Dec- July     | T                       |                           |
| Terminalia           | Brown Almond,          | Y           | Tree     | 10            | Feb-Oct       | Y                       |                           |
| arenicola            | Brown Damson           | 1           | nee      | 10            |               |                         | loss of few limbs, leaves |
| Aglaia sapindina     | Boodyarra              | Y           | Tree     | 12            | Nov- May      | Y                       |                           |
| Diploglottis smithii | Smith's Tamarind       | Y           | Tree     | 15            | Nov- Dec      | Y                       |                           |
| Mischocarpus         |                        | V           | <b>-</b> | 4.5           | Max Oat       | V                       |                           |
| exangulatus          | Red Tokoonja           | Y           | Tree     | 15            | May- Oct      | Y                       |                           |
| Polyscias            |                        | Y           | Chrub    | 15            | July April    | Y                       |                           |
| australiana          | Ivory Basswood         | T           | Shrub    | 15            | July- April   | T                       |                           |
| Ptychosperma         |                        |             | nolm     | 15            | Apr-nov,      | Y                       |                           |
| elegans              | Solitaire palm         |             | palm     | 15            | jan           | T                       | flexible                  |
| Syzygium fibrosum    | Fibrous Satinash       |             | Shrub    | 15            | July- Feb     | Y                       | loss of limbs             |
| Terminalia catappa   | Beach Almond           | Y           | Tree     | 15            | Feb-April     | Y                       | loss of leaves            |
| Atractocarpus        |                        |             |          |               |               |                         |                           |
| fitzalanii           | Native Gardenia        | Y           | shrub    | 20            | jan-aug       | Y                       | Ok when protected         |
| Chionanthus          |                        |             | -        |               |               |                         |                           |
| ramiflorus           | Native Olive           | Y           | Tree     | 20            | July- Feb     | Y                       |                           |
| Cryptocarya          |                        |             | <u>.</u> |               | <b>D</b> A 11 |                         |                           |
| triplinervis         | Brown Laurel           | Y           | Shrub    | 20            | Dec- April    |                         |                           |
| Endiandra            | Queensland             | V           | 1        | 00            |               | V                       |                           |
| compressa            | Greenheart             | Y           | tree     | 20            | Mar- Nov      | Y                       |                           |
| Ficus benjamina      | Weeping Fig            |             | tree     | 20            | Feb- Dec      |                         | loss of limbs             |
| Helicia nortoniana   | Norton's Oak           | Y           | Tree     | 20            | Any           | Y                       |                           |
| Licuala ramsayi      | Licuala                | Y           | Palm     | 20            | Nov-Dec       | Ý                       | flexible                  |
| Omalanthus novo-     | Licuala                | 1           |          | 20            | NOV-Dec       |                         | IIEXIDIE                  |
| guinensis            | Bleeding Heart         | Y           | tree     | 20            | nov-feb       |                         | poor pioneer low density  |
| Pandanus             | Dicculling Fleart      |             |          |               |               |                         | poor pioneer low density  |
| solmslaubachii       | swamp Pandan           | Y           | Shrub    | 20            | July-Nov      |                         | No Loss                   |
| Toechima             | Swamp i andan          |             |          |               |               |                         |                           |
| erythrocarpum        | Pink tamarind          | Y           | tree     | 20            | oct-feb       |                         |                           |
| Syzygium australe    |                        |             |          |               | Any           |                         |                           |
| cyzygiam adollaio    | Creek Cherry           |             | Shrub    | 24            | month         | Y                       | loss of limbs             |
| Barringtonia         |                        |             | -        |               |               |                         |                           |
| racemosa             | Cassowary Pine         | Y           | Tree     | 25            | Mar- April    | Y                       |                           |
| Cryptocarya          | Rusty Laurel,          |             | -        | 0.5           |               |                         |                           |
| mackinnoniana        | Mackinnons laurel      | Y           | Tree     | 25            | Apr-Nov       | Y                       | hardy                     |
| Myristica insipida   | Native Nutmeg          | Y           | Tree     | 25            | jan-feb       | Y                       |                           |
| Schefflera           | Native Natilleg        |             |          |               | -             | -                       |                           |
| actinophylla         | Umbrella tree          | Y           | Tree     | 25            | Oct-Mar       |                         | loss of limbs             |
| Syzygium             |                        |             | _        |               | Sept-         |                         |                           |
| cormiflorum          | Bumpy Satinash         | Y           | Tree     | 25            | June          | Y                       | loss of limbs             |
| Syzygium forte       |                        |             | -        |               |               |                         |                           |
| subsp. forte         | White Apple            | Y           | Tree     | 25            | Nov- April    | Y                       | loss of few limbs, leaves |
| Syzygium             |                        |             | 4000     | 05            | luna mer      | V                       | -,                        |
| johnsonii            | Johnson's Satinash     |             | tree     | 25            | june-mar      | Y                       | tolerance                 |
| ,<br>Syzygium        |                        |             | Tree     | 25            |               | v                       |                           |
| tierneyanum          | River Cherry           |             | Tree     | 25            | Jan- May      | Y                       | little damage             |
| Barringtonia         |                        |             | troo     | 30            | Dec los       | Y                       |                           |
| calyptrata           | Mango Pine             |             | tree     | 30            | Dec- Jan      | T                       | No Loss                   |
| Scolopia braunii     | Flintwood, Brown       |             | tree     | 30            | dec apr       | Y                       |                           |
|                      | Birch                  |             | tree     | 30            | dec-apr       | I                       | No Loss                   |
| Syzygium             |                        | Y           | Tree     | 30            | May- Oct      | Y                       |                           |
| alliiligneum         | Onion Wood             | I           | 1166     | 50            | May- Oct      | I                       | loss of limbs             |



| Terminalia<br>sericocarpa | Damson Plum | Y | Tree | 30 | Nov-May     | Y | loss of few limbs, leaves            |
|---------------------------|-------------|---|------|----|-------------|---|--------------------------------------|
| Aleurites<br>moluccana    | Candlenut   |   | tree | 30 | Sep- Feb    |   | Unknown sulphur<br>crested cockatoos |
| Flindersia<br>brayleyana  | QLD Maple   |   | Tree | 30 | July- Jan   |   | very resistant                       |
| Melicope elleryana        | Corkwood    | Y | Tree | 30 | April- Sept |   | Unknown Ulysis butterfy<br>food      |

#### 3.1.3 Edge Closure trees and shrubs <15m

Less information on tree performance was available for this species selection and some of the selections were made on a generic basis as well as post Cyclone Larry (Curran et al., 2008) (Tucker et al., 2006) (Turton et al., 2008) (Jackes., 2008) and site observation.

The selection process was further restricted or substituted due to the lack of availability of sufficient quantities of certain species. The emphasis in species selection was a preference to cassowary fruiting species and edge closure.

| Species Name                   | Common Name         | Ella<br>Bay | Form  | Height<br>(m) | Fruit        | Cass<br>Fruit<br>Source | Cyclone Tolerance             |
|--------------------------------|---------------------|-------------|-------|---------------|--------------|-------------------------|-------------------------------|
| Leea indica                    | Bandicoot Berry     |             | Shrub | 4             | Mar- Dec     | Y                       | flexible                      |
| Cordyline<br>manners-suttoniae | Giant Palm Liliy    | Y           | Lily  | 5             | dec-may      | Y                       | flexible                      |
| Breynia cernua                 | Fart Bush           | Y           | shrub | 5             | Any<br>month | Y                       |                               |
| Davidsonia<br>pruriens         | Davidson's Plum     | Y           | shrub | 6             | Any          | Y                       |                               |
| Ficus congesta                 | Fig, Red Leaved Fig | Y           | Shrub | 6             | Any<br>month | Y                       | loss of limbs                 |
| Fagraea cambagei               | Porcelain fruit     | Y           | Shrub | 8             | Apr_Nov      | Y                       |                               |
| Glochidion<br>harveyanum       | Buttonwood          | Y           | Shrub | 12            | june-feb     |                         | lost small branches<br>leaves |
| Leea indica                    | Bandicoot Berry     |             | Shrub | 4             | Mar- Dec     | Y                       | flexible                      |
| Cordyline<br>manners-suttoniae | Giant Palm Liliy    | Y           | Lily  | 5             | dec-may      | Y                       | flexible                      |
| Breynia cernua                 | Fart Bush           | Y           | shrub | 5             | Any<br>month | Y                       |                               |
| Davidsonia<br>pruriens         | Davidson's Plum     | Y           | shrub | 6             | Any          | Y                       |                               |
| Ficus congesta                 | Fig, Red Leaved Fig | Y           | Shrub | 6             | Any<br>month | Y                       | loss of limbs                 |
| Fagraea cambagei               |                     | Y           | Shrub | 8             | Apr_Nov      | Y                       |                               |
| Glochidion<br>harveyanum       | Buttonwood          | Y           | Shrub | 12            | june-feb     |                         | lost small branches<br>leaves |



#### 4. Planting Strategy, Pattern and Densities

#### 4.1.1 Planting Strategy

The conventional wisdom would be rows of tall trees to form a wind break, however the wind velocity, variable wind direction and tree destruction in the cyclones may be greater than can be protected by a wind break of trees and the closer proximity of interspersed tall trees may be an alternative to provide greater protection. Research on wind break affects has been predominately focussed on the benefits from crop yields and there is little comment on the protection afforded to plants from cyclones. In general the benefits of a windbreak are realised up to 10 times the tree height downstream of the windbreak.

The two areas were defined by the local descriptions of:

- North-West Block (2.36 ha). Planted with rows of tall trees as windbreak; and
- Hidden Paddock (1.71 ha). Planted with rows of trees with tall trees interspersed.

The species planting process for the North-West block was to plant in zones of the tree heights with the low height edge sealing trees on the eastern prevailing wind direction side. Whereas the Hidden Paddock site was planted in rows with the taller trees planted in random, but with clusters of taller trees.

#### 4.2 Planting Pattern

Weed control will be the dominant ongoing issue of the revegetation until canopy closure is sufficient to minimise weed reoccurrence. Weed control methods are usually labour intensive; on foot with backpack, or by quad as practised in plantation style rows. The decision was made to use a quad bike with a towed 300l tank and a shielded boom spray. The use of a quad also provided a limitation to row spacing and density. This is contra to the advice on Maximum Diversity planting in Repairing the Rainforest which recommends that "*trees should be planted at random 2 -2.2 m spacings, avoiding straight lines*" but this would force all weed control to be manual on foot with a backpack.

The requirement for economic weed control necessitates that the trees are planted in rows so that the quad is able to travel along a row. The typical tree density in revegetation varies from 400 to 800 in most plantations to 3,000 to 6,000 in a mature rain forest depending on canopy cover, basal area and height range (Catterall, 2006). Tree/shrub spacing of 5,000 equates to a tree every 2m<sup>2</sup> or a tree to tree average distance of 1.4m.

|                    |       | Row spacing closest packed |       |       |       |       |  |  |  |  |  |  |  |
|--------------------|-------|----------------------------|-------|-------|-------|-------|--|--|--|--|--|--|--|
| Tree row spacing   | 1.41m | 1.8m                       | 2.0m  | 2.2m  | 2.5m  | 3.0m  |  |  |  |  |  |  |  |
| Number of trees/Ha | 5,016 | 3,086                      | 2,500 | 2,066 | 1,600 | 1,111 |  |  |  |  |  |  |  |

#### Table 4:1 Revegetation density - number of trees per hectare

The dense shrub vegetation (<15m tall) and palms found in the edge closure rows will be required to be planted more densely to enhance edge closure and minimise light into the revegetation block. The rows of edge closure trees will also be required to have a high wind resistance (low porosity) to the cyclonic winds, and be frangible. Due to the relatively small size of the shrubby vegetation, the planting density was selected at 3,000 plants per ha with a spacing of 1.8m.

The cassowary "fruit source" trees (15m to 30m) were planted at a density of 2,500 plants per ha with a spacing of 2.0m. These are larger trees and will require a larger footprint once established however the variable growth rates will lead to holes in the canopy prolonging weed control until canopy closure.

The taller trees >30m were planted at a spacing of 2,000 plants per ha with a spacing of 2.2m. Weed control will be a longer term problem in this area, but the additional row spacing should lead to more efficient motorised spraying.



The requirement to be aesthetically pleasing is a development and resort requirement in that the tree rows should not look like a plantation; there should be no straight lines and a veiwer should not able to look through the "rows" and see row lines.

This will be achieved by two methods, varying the planting density and planting in the trees in undulating wave rows. This landscape appearance will be enhanced by planting zones of the different height trees and an edge zone which will close off the view from the edge.

#### 4.2.1 Planting Pattern North-West Block

The North-West Block was planted with edge closure rows on the prevailing weather eastern side. The block was divided into undulating wave rows in general running north south.

The order of the tree zones from east to west were:

- 5 x rows; <15m edge closure shrubs and palms;
- 2 x rows; 15 30m cassowary fruiting trees;
- 11 x rows; >30m wind break trees;
- 16 x rows; 15 30m cassowary fruiting trees;
- 12 x rows >30m wind break trees; and
- 7 x rows; 15 30m cassowary fruiting trees.

The purpose of the first two zones is to provide a gradual canopy profile increase to form a ramp shape to the wind to reduce wind eddying under the tree canopy that often results in tree damage and fall during high wind events.

#### 4.2.2 Planting Pattern Hidden Paddock

The variation with tree planting in the hidden paddock was that the trees were planted in bands of tree height but additional cyclone resistant tall trees (>30m) were mixed in with the cassowary fruiting trees e.g. Blue Quangdong (*Elaeocarpus angustifolius*) and White Apple (*Syzygium forte*). This additional planting is designed to enable the larger trees to offer greater protection to the smaller trees/shrubs during high wind events. The shape of the hidden paddock was elongated in an east west direction and to maintain the comparison to the North West block the rows were arranged in many short rows. This has proven to be very poor design and increased effort in weed control. and has meant that a greater amount of time has been spent in on foot spraying.

The order of the tree zones from east to west were:

- 10 x rows; 15 30m cassowary fruiting trees;
- 10 x rows; >30m wind break trees; and
- 15 x rows; 15 30m cassowary fruiting trees;
- 10 x rows >30m wind break trees; and
- 25 x rows; 15 30m cassowary fruiting trees.
- 10 x rows >30m wind break trees; and
- 25 x rows; 15 30m cassowary fruiting trees
- 10 x rows >30m wind break trees; and
- 10 x rows; 15 30m cassowary fruiting trees
- 5 x rows >30m wind break trees; and
- 5 to 10 x rows; 15 30m cassowary fruiting trees

The planting pattern of the revegetation in North-West area (2.36 ha) and Hidden Paddock (1.71 ha) is shown in Figure 4.1. The plan is diagrammatic and each row line represents 5 planted rows.



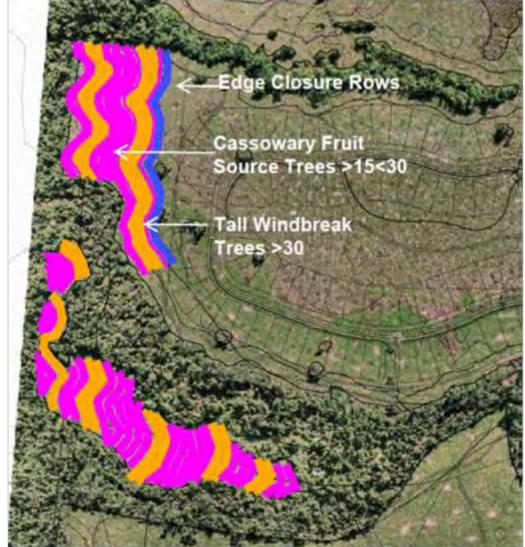



Figure 4:1 Planting pattern of revegetation - each individual line represents 5 rows

#### 4.3 Planting Process

#### **Ground Preparation**

Ground preparation included 3 broad boom spray applications with Glyphosate 540. One week after each spray this was followed by a slashing program. New emergent weed species were further controlled by 'spot' spray application at intervals between boom sprays, slashing and revegetation implementation.





Figure 4:2 North West corner after two boom sprays and second slash

The plant species were set aside in the local nurseries. The purchase of 12,000 trees involved purchases from Innisfail and Tully council nurseries and from C4 cassowary conservation group. While the combined production from the nurseries tallies to over 80,000 plants per year the specific species that were required were limited. Ella Bay staff had been providing the nurseries with seed stock for some 12 months prior.



Figure 4:3 Plants set aside for hardening in the sun



#### Plant Sorting

Once plants were collected from the nursery they were allocated colours based on the species category in this case

- Yellow >30m
- Pink >15m < 30m</li>
- Blue <15m edge effect</li>

Each small tree/shrub planting box contained a random assortment of species. Large tree planting boxes contained 20% blue quandong (*E. angustifolius*) and 20% white apple (*S. forte*). The remaining plants in the large tree planting boxes consist of a random assortment of other species.

The plants were set aside in a fenced enclosure with overhead sprinkling to sun harden and acclimatise the plants. The plants remained in the enclosure for 4 to 12 weeks as the species tally was



#### Figure 4:4 Plant Laydown area at Ella Bay.

#### Marking the planting locations

Preparing the revegetation site for planting to ensure correct placement of species involved the following:

- To help with marking out individual planting positions on the ground for each tree, long lengths of rope were utilized with knots tied along the length of the rope.
- 90 meter sections of rope knotted at either 2.0 m or 2.2 m intervals. These sections were laid out using the design guide in waving rows parallel to each other and existing vegetation edge;
- Each knot was then spray marked to represent a planting location. This is individually
  marked with the associated paint whose colour to match the desired zone for that area
  (i.e. either orange paint for large trees or pink paint for small trees/shrubs);
- Individual large trees are to be no closer than 2.2m from their nearest neighbour, including small trees/shrubs;
- The rope was laid out in a wave pattern with the amplitude of the wave greater than the row spacing.

#### Planting

The Contract Planters were supported by Ella Bay staff to ensure the correct methodology was followed. A pre-works meeting was held daily with all contractors and staff. In the acclimatisation area Ella Bay staff carried out quality control by organising the allocation and mix of species specific to the colour category.

# ella



Figure 4:5 Contract tree planter preparing to insert a plant into the ground

Regular quality control through-out the day was also conducted with particular focus at the endof-day where Ella Bay staff would do a walk through of the days work.

Additional actions required for this process were:

- The establishment of an on-site 'central plant acclimatisation and lay-down area' which was fenced to manage wallaby predation of plants; it didn't however protect against the native rodents which ate out a lot of the palms before planting could commenced.
- Once planted certain species that were identified as a 'wallaby favourite' eg. Alexander Palm, Solitaire Palm were afforded individual plant protection from predation in the form of a biodegradable bag with 3 cane stakes;



#### Figure 4:6 Wallaby preferred species were protected with biodegradable bags.

#### On going maintenance

Once planted, the revegetation area was taken over by on-going maintenance:

- maintaining exclusion the fence from the wallabies;
- weed control; and



replacement of any casualties with endemic species.



Figure 4:7 North West corner spot spraying prior to fabrication of custom spray boom.

Weed control is a high resource and costly requirement of the maintenance program. Early intervention was important to ensure weeds were sprayed at low heights (avoiding over spray). The intent was to develop a custom boom spray and travel along the rows spraying the majority of the inter row with the boom and spraying in between the rows where required with the spot spray. The 300I towed tank was fitted with hose reel so that two people could use the quad bike, boom and hand boom and increase the area covered control emerging weeds. The reality was that the initial setout had problems with spacing of the rows and the tightness of the "wave" put in the rows. In the Hidden paddock many of the rows were too short meaning that there was difficulty in using the trailer with the tight turns



Figure 4:8 North West corner spot spraying with custom boom in background

Due to weather constraints the spraying of the revegetation areas is often broken up into short windows. A full spray is managed every two to three months on average but again this is highly variable depending on rainfall, temperature (time of year) and wind.



#### 5. Revegetation Risks

The planting of large areas of Maximum Diversity species is not a recommended practice due to poor survival rates. This has been the driver to the more recent 'plantation style' layout in large area revegetation - with minimalistic 'pioneer species quota' of Framework Species Method.

The risks to plant survival were identified as:

- The high wallaby numbers which have denuded many riparian areas of germinating trees and have ravaged other earlier revegetation trials of trees, in particular all palms;
- Water stress the range in species used have varying water requirements and it is best to either irrigate or plant in late dry season prior to the Wet;
- Weed control;
- Poor survival rates due to previous agricultural conditions; and
- Cyclone season.

To reduce the risk of wallaby damage the North West block was fenced with a trial of the cassowary exclusion fence – 1.8m high shadecloth fence (refer to Volume 6.1j) on the eastern side only. The Hidden Paddock was not fenced at all.

The planting did not occur until July and August in 2010 which is much later than was planned and in a dry year would have potentially caused a problem, however 2010/2011 saw the end to the El Niňo and a wetter than normal dry season and wet season. This enabled the plants to get through the typical high stress period with few losses.

The tree mortality due to weed control has two forms;

- Damage to the seedlings from mechanical movement and from overspray; and
- Competition from overgrown weeds.

The damage from mechanical movement, quad bike wheels, inadvertent damage from spray hoses, and neighbouring vegetation branch drop have all been produced minor damage.

The varying growth rates of the species selected for maximum diversity will also mean that some of the faster pioneer species will shade the slower growing species resulting in holes in the canopy.

#### 5.1 Tree Growth Performance

Plant mortality summary out of 12,000 seedlings

- 800 plants High wind event (Category 5 Cyclone Yasi)
- 500 plants Dry weather post planting
- 120 plants Miscellaneous

Miscellaneous factors include:

- wallaby/pest attack
- overspray
- disease, lack of root development
- incorrect planting

#### 5.1.1 High wind event

The species most affected by the cyclone were the faster growing species such as Blue Quandong, Bleeding Heart, Cassowary Plum, Fart Bush, Bandicoot Berry were all significantly affected by the strong winds. It is not thought to be a reflection of their species suitability but rather their initial rapid growth rate with a less established root system, as larger specimens of the same species over the property faired very well in comparison

# ella



#### 5.1.2 Dry weather

The species which tended to perish shortly after planting due to dry weather were Fibrous Satinash, Porcelain Fruit, Licualas Palms and Davidson's Plums. This was attributed to several extended periods of dry weather and full sun combined with the plants smaller size at planting (approx 100mm) as compared to the other species when planted which were generally (300-600mm). It is thought that the smaller tube stock size and lack of adequate root development rather than the species ability to cope with dry periods is what may have contributed to their failure to establish and grow. The few larger specimens of these species that were planted out have survived and are growing well.

Davidson's Plum, Powder Puff Lilly Pilly and Porcelain Fruit appear to resent full sun as the majority of those planted seem to be struggling.

#### 5.1.3 Wallabies

Some agile wallaby (*Macropus agilis*) invasion of the revegetation area did occur despite the efforts made with fencing to exclude them. The wallabies gained access by going around the fences and through the existing forest. Wallabies favourites included Alexander palm (*A.alexandrae*), solitaire palm (*P.elegans*), licuala palm (*L.ramsayi*), cordylines (*C. Mannerssuttonae*) and blue quandongs (*E.grandis*).

#### 5.1.4 Feral Pigs, Caterpillars, Insects and Other

Other pests such as feral pigs played a small part in the destruction of a few of the palms and Pandanus species which they chewed to extract the soft palatable cores.

Caterpillars also had a detrimental effect on some species including the larvae of the fouro'clock moth which fed heavily on the corkwood seedlings killing some of them by completely denuding them of leaves. The larvae of the Ulysses butterfly also fed heavily on the corky bark seedlings however most recovered quickly.

Their were occasions where during the spraying of weeds young trees were accidentally sprayed causing the plant to sicken or die. However this accounted for very little mortality.

At the end of the planting an excess of trees remained in the laydown area to be used for replacement planting - approximately 200 trees succumbed to the lethal effects of shading out etc whilst still in the boxes. The survivors were used to replace lost trees.



#### 5.2 Replacement Plantings

Replacement trees were two separate mixed species groups one from the "orange" species mix and one from the "pink" species mix as well as around 100 trees to make up the balance consisting of Blue Quandongs and Alexander Palms, Licualas and Solitaire Palms.

#### 5.2.1 Natural Recruitment

Native plants that have observed germinating include Milky Pine Blue quandong, Ylang-Ylang, Bleeding Heart Tree, Native Banana, Scott's Ginger, Native Olive, Macaranga and Leichardt tree. Many of these germinate in wet weather and shrivel and die in the open sun light in dry periods. As the canopy develops the weed spraying can be reduced resulting in a higher survival rate for many of the recruitment seedlings.

#### 5.3 Cyclone Yasi

The unidentified risk was category 5 Cyclone Yasi that devastated Far North Queensland during February 3<sup>rd</sup> 2011. The cyclone stripped protective adjacent vegetation, and snapped canopies and branches from trees. In many places the winds blew the branches on to the tree seedlings such that one side of the hidden paddock the majority of trees along the southern side were damage or broken over. Many seedlings had the top half stripped of leaves but were substantially undamaged where as many of the faster growing trees were broken over or broken off. In particular one of the most cyclone tolerant as a mature tree the Blue Quandong (*Elaeocarpus arnhemicus*) suffered greater than 80% mortality.



A few trees survived being blown over, and continued growing at a new angle (see below). Unfortunately this often resulted in them being in the track between rows, as such were sprayed with herbicide, and driven or trampled over.



#### Six months later

Fruiting of a number of species has occurred, despite two cyclonic events at the beginning of the year. Bandicoot Berry Fruiting in March 2011 (*below*)





#### 6. Cost analysis

Revegetation in the wet tropics has been reported to cost from \$20k to \$60k per ha (Catterall and Kanowski, 2009) where as plantation cost in southern states are \$4k to \$6k. The difference in costs is due to a number of variables:

- Maximum diversity planning method;
- Planting density;
- Weed control ; and

The planting and acquisition costs in the wet tropics with bagging and site preparation are about \$3 per tree, and with the planting density at 3 to 4 times the plantation density (typically 2000 to 3000 compared to 800 to 1000) the purchase costs alone are greater than the plantation costs.

With the Framework Species Method (FSM) the primary focus is to select trees to provide canopy cover, plant with a high density that helps to block out the weeds and then follow up with backpack spray of glyphosate twice a year for 3 to 4 years. With maximum diversity planting the trees grow at different rates creating holes in the canopy allowing weeds to grow, increasing the requirement for spraying to 4 to 6 times per year.

The current data if extrapolated for an additional 3 years is trending towards \$25,000 per ha. There are a number of learnings from this exercise, from a cost perspective:

- The row spacing and access for the spray vehicle is the most critical;
- That weed matting along around the tree would reduce competition and retain moisture in the first 12 months;
- The condition of the smaller seedlings are critical; and
- That some form of control of native rats and moth or caterpillar should be used in the laydown area.

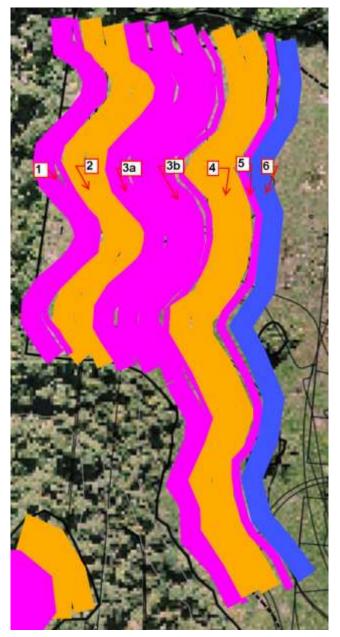


- Beasley, J (2008) Plants of Tropical North Queensland: The Compact Guide. Footloose Publications
- Bradford, M. G., Dennis, A.J., and Westcott D., (2008) Diet and Dietary Preferences of the Southern Cassowary (Casuarius casuarius) in North queensland Australia, Biotropica, 40(3):338-343.
- Calvert G and Jackes, B., (2011), Choosing Plants for Areas Prone to Cyclones <u>http://www-accessed</u> 26.01.2010 <u>http://www-accessed</u>
- Cameron D.M., Rance S.J. and Lukitsch P.J. (1983) Tree damage in Darwin parks and gardens during cyclones Tracy and Max. Division of Forest Research, CSIRO, Brisbane
- Catterall, C.P. and Kanowski, J. (2009). Rainforest Restoration: Approaches, Costs and Biodiversity Outcomes. Reef & Rainforest Research Centre Ltd, Cairns. Online via: http://www.rrrc.org.au/publications/tnq\_factsheets.html
- Catterall, C. P. and Harrison, D. A. (2006). Rainforest Restoration Activities in Australia's Tropics and Subtropics. Cooperative Research Centre for Tropical Rainforest Ecology and Management. Rainforest CRC, Cairns, Australia (94 pp).
- Cooper, W. (1953 -) Fruits of the Australian tropical rainforest. Nokomis Publications, c2004
- Curran, T J., Gersbach, L N, Edwards, W, and Krockenberger, A K. (2008) Wood density predicts plant damage and vegetative recovery rates caused by cyclone disturbance in tropical rainforest tree species of North Queensland, Australia. Austral Ecology, 33(4) 442-450
- Gersbach L N (2006) Resistance vs. Resilience: Alternative Mechanisms to Survive Severe Cyclones in Mabi Type 5b Rainforest Tree Species of North Queensland, Australia Butler University, Indianapolis, IN The School for Field Studies, Center for Rainforest Studies, Yungaburra, Australia, Research Advisor: Dr. Tim Curran
- Harrison R., Wardell-Johnson G., and McAlpine C., (2003), Rainforest Reforestation and Biodiversity Benefits: A Case Study from the Australian Wet Tropics. Annals of Tropical Research 25(2): 65-75
- Metcalfe, DJ, Bradford MG, Ford, AJ (2008) Cyclone damage to tropical rain forests: Speciesand community-level impacts Austral Ecology 33, 432–441
- Nicholson, H & Nicholson, N (2007) Australian Rainforest Plants I-VI Terania Rainforest Publishing
- Pullar, DV & Lamb, D (2008) Scenario Analysis with Performance Indicators: a Case Study for Forest Linkage Restoration Geography, Planning and Architecture, The University of Queensland, Australia
- Tucker NI and Murphy TM. (1997) The effects of ecological rehabilitation on vegetation<br/>recruitment: some observations from the Wet Tropics of North Queensland Forest<br/>Ecology and Management, Volume 99, Issues 1-2, Pages 133-152<br/>http://www.sciencedirect.com/science/article/pii/S0378112797002004<br/>accessed<br/>26.01.2010
- Tucker, N., Middleton, J., and Kupsch, K., (2006), Cyclone Larry. (Biotropica Australia) <u>http://www.wettropics.gov.au/res/downloads/cyclone/NigelTuckerCycloneLarry.pdf</u> accessed 26.01.2010



- Turton SM (Ed.) (2008) Ecological impacts of tropical cyclones on Australian terrestrial ecosystems: insights from Cyclones Larry and Monica. Austral Ecology 33(4), 365–584 ISSN 1442-9993
- Turton SM (2008) Landscape-scale impacts of Cyclone Larry on the forests of northeast Australia, including comparisons with previous cyclones impacting the region between 1858 and 2006 Austral Ecology 33, 409–416




### Appendix 1. List and Quantity of Initial Species Planted

| Species Name                        | Common Name/s               | No  |
|-------------------------------------|-----------------------------|-----|
| Acmena graveolens                   | Cassowary Satinash          | 50  |
| Acmena hemilampra subsp. hemilampra | Broad leaf Lilly Pilly      | 100 |
| Aglaia sapindina                    | Boodyarra                   | 150 |
| Archontophoenix alexandrae          | Alexander Palm              | 100 |
| Atractocarpus fitzalanii            | Native Gardenia             | 150 |
| Barringtonia calyptrata             | Mango Pine                  | 240 |
| Barringtonia racemosa               | Cassowary Pine              | 63  |
| Beilschmedia obtusifolia            | Blush Walnut                | 250 |
| Carallia brachiata                  | Corky Bark                  | 300 |
| Cerbera florbinda                   | cassowary plum              | 147 |
| Chionanthus ramiflorus              | Native Olive                | 150 |
| Cinnamomum laubatii                 | Pepperwoood                 | 150 |
| Cordyline manners-suttoniae         | GIANT Palm Liliy            | 90  |
| Cryptocarya hypospodia              | Northern Laurel             | 20  |
| Davidsonia pruriens                 | Davidson's Plum             | 300 |
| Diploglottis smithii                | Smith's Tamarind            | 150 |
| Elaeocarpus angustifolius           | Blue quandong syn Grandis   | 500 |
| Endiandra compressa                 | Queensland Greenheart       | 90  |
| Endiandra montana                   | Brown Walnut                | 50  |
| Fagraea cambagei                    | porcelain fruit             | 40  |
| Ficus congesta                      | Fig, Red Leaved Fig         | 350 |
| Ficus variegata                     | Variegated fig              | 50  |
| Flindersia bourjottiana             | Queensland Silver Ash       | 50  |
| Flindersia brayleyana               | QLD Maple                   | 450 |
| Gmelina dalrympleana                | White Beech                 | 50  |
| Helicia nortoniana                  | Norton's Oak                | 150 |
| Leea indica                         | Bandicoot Berry             | 150 |
| Licuala ramsayi                     | Licuala                     | 137 |
| Mischocarpus exangulatus            | Red Tokoonja                | 450 |
| Myristica insipida                  | Native Nutmeg               | 80  |
| Nauclea orientalis                  | Leichardt Pine              | 100 |
| Phaleria clerodendron               | Scented Daphne              | 150 |
| Ptychosperma elegans                | Solitaire palm              | 150 |
| Scolopia braunii                    | Flintwood, Brown Birch      | 124 |
| Syzygium alliiligneum               | Onion Wood                  | 400 |
| Syzygium angophoroides              | Yarrabah Satinash           | 50  |
| Syzygium australe                   | Creek Cherry                | 239 |
| Syzygium cormiflorum                | Bumpy Satinash              | 150 |
| Syzygium fibrosum                   | Fibrous Satinash            | 450 |
| Syzygium forte subsp. forte         | White Apple                 | 203 |
| Syzygium johnsonii                  | Johnson's Satinash          | 40  |
| Syzygium kuranda                    | Kuranda Satinash            | 50  |
| Syzygium luehmannii                 | Cherry Satinash             | 40  |
| Syzygium tierneyanum                | River Cherry                | 450 |
| Syzygium wilsonii                   | Powderpuff Lilly Pilly      | 400 |
| Terminalia arenicola                | Brown Almond, Brown Damson  | 50  |
| Terminalia catappa                  | Indian Almond, Beach Almond | 171 |
| Terminalia sericocarpa              | Damson Plum                 | 450 |
| Toechima erythrocarpum              | Pink tamarind               | 100 |



## Appendix 2. North West Revegetation Strategy – Details for marking up paddock.

this picture is INDICATIVE only.



|     |        | Spacing b | etween rows       |  |  |  |  |  |  |
|-----|--------|-----------|-------------------|--|--|--|--|--|--|
| PIN | К      | 2.0m      |                   |  |  |  |  |  |  |
| OR  | ANGE   | 2.2m      | 2.2m              |  |  |  |  |  |  |
| BLL | JE     | 2.0m      |                   |  |  |  |  |  |  |
|     |        |           |                   |  |  |  |  |  |  |
|     | # of R | ows       | # of Trees (est.) |  |  |  |  |  |  |
| 1   | 7 'sho | ort'      | 595               |  |  |  |  |  |  |
| 2   | 12 'sh | ort'      | 876               |  |  |  |  |  |  |
| 3a  | 9 'sho | ort'      | 765               |  |  |  |  |  |  |
| 3b  | 7 'lon | g'        | 945               |  |  |  |  |  |  |
| 4   | 11'lor | ıg'       | 1276              |  |  |  |  |  |  |
| 5   | 2 'lon | g'        | 270               |  |  |  |  |  |  |
| 6   | 5 'lon | g'        | 675               |  |  |  |  |  |  |
|     |        |           |                   |  |  |  |  |  |  |

The numbers of trees for each 'section' are only estimates.

Work from the western vegetation line eastwards – and would suggest marking up the same way.



#### **Revegetation Area**

| 7      |                                      |         | West – Cassow |          |           |           |           |
|--------|--------------------------------------|---------|---------------|----------|-----------|-----------|-----------|
| Zone   | Description                          | Height  | Planting      | Planting | number of | Approx    | Length of |
|        |                                      | Range   | Density       | Spacing  | rows      | number of | row       |
|        |                                      |         | (Trees/Ha)    |          |           | Trees     | Average   |
| Pink   | Low land rainforest species          | >15-30m | 2,500         | 2.0 m    | 171       | 8,529     | 85        |
| Orange | Low land rainforest species          | >30m    | 2,000         | 2.2 m    | 9         | 1,680     | 420       |
|        | Attractive low land rainforest shrub |         |               |          |           |           |           |
| Yellow | species that grow less than          | <15     | 3,500         | 1.7 m    | 6         | 840       | 240       |
|        |                                      |         |               |          | 185       | 11,049    |           |

Length of strip

100

Approximate Total Area ha 4.1267 ha



### Appendix 3. Seed collection table

| Seed Collection                   |                                 |         |          |     |           |        |      | Seed ( | ooneen |       | T(CVC)   | geta  |      |         | <u> </u> | ,    |      |           |        |          |         |       |      |      |         |        |         |     |
|-----------------------------------|---------------------------------|---------|----------|-----|-----------|--------|------|--------|--------|-------|----------|-------|------|---------|----------|------|------|-----------|--------|----------|---------|-------|------|------|---------|--------|---------|-----|
| Seed Collection<br>Common Name:   | Scientific Name:                | January | February |     | March     |        |      | April  |        |       | May      |       |      | June    |          | July |      | August    | Septer | mber     | Oct     | tober |      | Nove | mber    |        | Decemb  | ber |
| Brown Salwood                     | Acacia mangium                  | bandary | reblary  |     | March     |        |      | Аріп   |        |       | way      |       |      | Julie   |          | odiy |      | hugust    | Ocpici |          | 000     |       |      | 5000 |         | —      | Decenie |     |
| Cassowary Satinash                | Acmena graveolens               |         |          |     |           |        |      |        |        |       | 25       |       |      |         |          |      |      | 50        |        |          |         |       |      | 3000 |         |        |         |     |
| Blush/Broad leaved Satinash       | Acmena hemilampra               |         |          |     |           |        |      |        |        |       | 20       | 1000  | 5000 | 250 250 | )        |      |      |           |        |          |         |       |      |      |         |        |         |     |
| Red-Bean Tree                     | Adenanthera pavonina            |         |          |     |           |        |      |        | 200    |       |          |       |      |         |          |      |      | 100       |        |          |         |       |      |      |         |        |         | _   |
| Hairy Bird's Eye                  | Alectryon tomentosus            |         |          |     |           |        |      |        | 1500   |       |          |       |      | _       |          |      |      |           |        |          |         |       |      |      |         |        |         | _   |
| Candlenut                         | Aleurites moluccana             |         |          | 120 | 400       |        |      |        |        |       |          |       |      |         |          |      |      |           |        |          |         |       |      |      |         |        |         |     |
| Candlenut                         | Aeurites rockinghamensis        |         |          | .20 |           |        |      |        |        |       |          |       |      |         |          |      |      | 500       |        |          |         |       |      |      |         |        |         | _   |
| Native Ginger                     | Aphinia caerulea                |         |          |     | 500       |        |      |        |        |       |          |       |      |         |          |      |      |           |        |          |         |       |      |      |         |        |         | _   |
| Pleated Ginger                    | Apinia arctiflora               |         |          |     | 000       | 1000   |      |        | 1000   |       |          |       |      |         |          |      |      |           |        |          |         |       |      |      |         |        |         | _   |
| Black-stemmed Ginger              | Apinia modesta                  |         |          |     |           | 1000   |      |        | 1500   |       |          |       |      |         |          |      |      |           |        |          |         |       |      |      |         |        |         |     |
| Pink Ash                          | Aphitonia petriei               |         |          |     |           |        |      |        | 1000   |       | _        |       |      |         |          |      |      |           |        |          |         |       |      |      |         | 300 15 | 50      |     |
| Dog Bane                          | Apocynum                        |         | 10       | -   |           |        |      |        |        |       | _        |       |      | _       |          |      |      |           |        |          |         |       |      |      |         |        |         | —   |
| Alexandra Palm                    | Archontophoenix alexandrae      |         | 10       | 240 | 1000 200  | 1 1500 | 2000 | 500    |        | 14    | 500      |       |      |         |          |      |      |           |        |          |         |       |      |      |         |        |         |     |
| Australian Arenga Palm            | Arenga australistica            |         |          | 240 | 1000 2000 | 1300   | 2000 | 500    |        | I.    | 500      |       |      |         |          |      |      | 100       |        |          | 50      |       |      |      |         |        |         |     |
| Bingil Bay Palm                   | Arenga australistica            |         |          | -   |           |        |      | 200    | 200    |       | _        |       |      | _       |          |      |      | 100       | 100    |          | 50      |       |      |      |         |        |         | —   |
| Native Dutchman's Pipe (Cairns    |                                 |         |          | -   |           |        |      | 200    | 200    |       | _        |       |      | _       |          |      |      |           | 100    |          |         |       |      |      |         |        |         |     |
| Birdwing?) Vine                   | Aristolochia acuminata (tagala) |         |          |     |           |        | -    | 5,000  |        |       |          |       |      |         |          |      |      |           |        |          |         |       |      |      |         |        |         |     |
| Native Gardenia                   | Atractocarpus fitzalanii        |         |          | _   | 5000      |        | 5,   | 5,000  |        |       |          |       |      |         |          |      |      |           |        |          |         |       |      |      |         |        |         |     |
| Cassowary Pine                    | Barringtonia calyptrata         |         |          | _   | 3000      |        |      |        |        |       |          |       |      |         |          |      |      |           |        |          |         |       |      |      |         |        | 50 50   |     |
|                                   |                                 |         |          | _   |           |        |      |        |        |       | _        |       |      | _       |          |      |      |           |        |          |         |       | 40   |      |         |        | 50 50   |     |
| Yellow Walnut                     | Beilschmieda bancroftii         |         |          |     |           | +      |      |        |        |       | _        | -     |      |         |          |      |      |           |        |          | 30      |       | 10   |      | 000     |        |         |     |
| Fart Bush                         | Breynia cernua                  |         |          | _   |           |        |      |        |        |       |          |       |      | 200     | )        |      |      |           |        |          |         |       |      |      | 300     |        | 200     |     |
| Fishtailed Lawyer Cane            | Calamus caryotoides             |         |          |     |           | 50     |      |        |        |       | _        | 2000  |      | 100     |          |      |      |           |        |          |         |       |      |      |         |        | +       |     |
| Beach callophyllum                | Calophyllum inophyllum          |         |          |     |           |        |      |        |        |       |          | -     |      | 100     |          |      |      |           |        |          |         |       |      |      |         |        |         |     |
| Black Bean Tree                   | Castanospermum australae        |         | 50       | 65  | 200 15    | 200    | 150  |        |        |       | 200      | )     |      | 300     |          |      |      | 200       |        |          | -       |       |      |      |         |        |         |     |
| Cassowary Plum                    | Cerbra floribunda               |         |          | _   |           |        |      |        |        |       |          |       |      |         |          | 80   |      | 12        |        | 30       | 2       | 200   |      |      | 20      |        | 20      |     |
| Dog Bane                          | Cerbera manghas                 |         |          | _   |           |        |      |        |        |       |          |       |      |         |          |      |      |           |        |          |         |       |      |      | 20      | 3      | 30 1    |     |
| Pimply Olive                      | Chionanthus axillans            |         |          | _   |           |        |      |        |        |       |          |       |      |         |          |      |      | 400       |        |          |         |       |      |      |         |        |         |     |
| Native Olive                      | Chionanthus ramiflora           |         |          | _   |           |        |      |        |        |       |          |       |      |         |          |      |      | 300       |        | 1000 100 | 00      |       |      |      |         |        |         |     |
| Laurel / Pepperwood               | Cinnimomum laubattii            |         |          | _   |           |        |      |        |        |       |          |       | 150  |         |          |      |      |           |        |          |         |       |      |      |         |        |         |     |
| Silver Bush                       | Convolvulus cneorum             |         |          | 10  |           |        |      |        |        |       |          |       |      |         |          |      |      |           |        |          |         |       |      |      |         |        |         |     |
| Palm Lily                         | Cordyline cannifolia            |         |          | _   | 100       |        |      | 800    |        |       |          |       |      |         |          |      |      |           |        |          |         |       |      |      |         |        |         |     |
| Clarkson's Laurel                 | Cryptocarya clarksonii          |         |          | _   |           |        |      |        |        |       |          |       |      |         |          |      |      |           |        |          |         | 400   |      |      |         |        |         |     |
| Northern Laurel                   | Cryptocarya hypospodia          |         |          |     |           |        |      |        |        |       |          |       |      |         |          |      |      |           |        |          |         |       | 250  |      |         |        |         |     |
| Poison Walnut                     | Cryptocarya pleuropema          |         |          |     |           |        |      |        |        |       |          |       |      |         |          |      |      |           |        |          |         |       |      |      |         |        | 50      |     |
| Qld Cycad                         | Cycas media                     |         |          | _   |           |        |      | 30     |        |       |          |       |      |         |          |      |      |           |        |          |         |       |      |      |         |        |         |     |
| Blue Flax Lilly                   | Dianella caerulea               |         |          |     |           |        |      |        | 1000   | 800 6 | 500 1000 | _     | 800  |         |          |      |      |           |        | 30       | 00 30   | 300   |      |      |         |        |         |     |
| Dianella Spp.                     | Dianella Spp.                   |         |          |     |           |        |      | 150    |        |       |          | 7000  |      | 180     | _        |      |      |           |        |          |         |       |      |      |         |        |         |     |
| Red Beech                         | Dillenia alata                  |         |          |     |           |        |      |        | 400    |       | 300      |       | 350  |         | )        | 100  |      | 100 200   |        |          | 200     | 300   | 300  |      | 500     |        | 300     |     |
| Cape York Cedar/Buff              | Dysoxylum alliceum              |         |          |     |           |        |      |        | 40     | 80 -  | 100 100  | 1000  | 250  | 50      |          |      |      |           |        |          |         |       |      |      |         |        |         |     |
| Eumundi Quandong                  | Elaeocarpus eumund              |         | 1000     |     | 800       |        |      |        |        |       |          |       |      |         |          |      |      |           |        |          |         |       |      |      |         |        |         |     |
| Blue Quandong                     | Eleocarpus grandis              |         |          |     |           |        |      |        |        |       |          |       | 80   | 50 50   | )        |      |      | 500       |        |          |         |       |      |      |         |        |         |     |
| Coral Tree                        | Erythrim variegata              |         |          |     |           |        |      |        | 800    |       |          |       |      |         |          |      |      |           |        |          |         |       |      |      |         |        |         |     |
| Porcelin Fruit                    | Fagraea cambagei                |         |          |     |           |        |      |        |        |       |          |       |      | 50      |          | 100  |      |           |        |          |         |       |      |      |         |        |         |     |
| Weeping Fig                       | Ficus benjamina                 |         |          |     |           |        |      |        |        |       |          |       |      |         |          |      |      |           | 5000   | 1000     | 15000   | 5000  |      |      |         |        |         |     |
| Red-Leaf Fig                      | Ficus congesta                  |         |          |     |           |        |      |        |        |       | 10000    | )     |      |         |          |      |      | 10000     |        |          |         |       |      | 2000 | 10000 1 | 1000   |         |     |
| Rusty Fig                         | Ficus destruens                 |         |          |     |           |        |      |        |        |       |          |       |      |         |          |      |      |           |        | 10000    |         |       |      |      |         |        |         |     |
| Drube Fig                         | Ficus drupacea                  |         |          |     |           |        |      |        |        |       |          |       |      | 900     |          |      |      |           |        |          |         |       |      |      |         |        |         |     |
| Hairy Fig                         | Ficus hispida                   |         |          |     |           |        |      |        |        |       |          |       |      |         |          |      |      |           |        |          | 1000    |       | 1000 |      |         |        |         |     |
| Small-leaved fig                  | Ficus obliqua                   |         |          |     | 1E+05     |        |      |        |        |       |          |       |      |         |          |      |      |           |        |          |         |       |      |      |         |        |         |     |
| Septic Fig                        | Ficus septica                   |         |          |     |           |        |      |        | 400    |       |          |       |      |         |          |      |      |           |        |          |         |       |      |      |         |        |         |     |
| Variegated Fig                    | Ficus variegata                 |         |          |     | 1E+05     |        |      |        |        |       |          |       | 19   | 000     |          |      |      |           |        |          |         |       | 2000 |      |         |        |         |     |
| White Fig                         | Ficus virens                    |         |          |     |           |        |      |        |        |       |          |       |      |         |          |      |      |           |        |          |         |       |      | 4000 |         |        |         |     |
| Daintree Hickory/Scaly ash        | Ganophyllum falcatum            |         | 20       |     |           |        |      |        |        |       |          |       |      |         |          |      |      |           |        |          |         |       |      |      |         |        |         |     |
| Buttonwood                        | Glochidion harveyanum           |         |          |     |           |        |      | 100    | 600    |       |          |       |      |         |          |      |      |           |        |          |         |       |      |      |         |        | +       |     |
| Umbrella Cheese Tree              | Glochidion sumatrum             |         |          |     |           |        |      |        |        |       |          |       |      |         |          |      |      | 200       |        |          |         |       |      |      |         |        | +       |     |
| White Beech                       | Gmelina fasciculiflora          |         |          |     |           |        |      |        |        |       |          | 1     |      |         |          |      |      |           |        |          |         |       |      |      | 300     | 150    | +       |     |
| Claudie Tuliipwood                | Harpullia ramiflora             |         |          |     |           | 400    |      |        |        |       |          |       |      |         |          |      |      |           |        |          |         |       |      |      |         |        | +       |     |
| Norton's Oak                      | Helicia nortoniana              |         |          |     |           |        |      | 500    | 500    | 500   | 400      | 800   |      | 150     |          |      |      |           |        |          |         |       |      |      |         |        | +       |     |
| Sea Hearse                        | Hernandia nymphaefolia          |         |          |     | 200       |        |      | 500    | 500    | 000   |          | . 000 |      |         |          |      |      |           |        |          |         | ++    |      |      |         |        | +       |     |
| Cottonwood                        | Hibiscus tiliaceus              |         | 1000     | 200 | 1000      |        |      |        |        |       |          |       |      |         |          |      |      |           |        |          |         |       |      |      | 500     | 10     | 00      |     |
| Bleeding Heart                    | Homalanthus novoguineum         |         | 1000     | 200 | 1000      |        |      |        |        |       |          |       | -    | 000     |          |      | 1000 | 1000 1000 |        |          |         |       |      |      | 500     | 10     |         |     |
|                                   |                                 |         |          |     |           | +      |      |        |        |       | _        | -     | 3    | 00      |          |      | 1000 | 1000 1000 |        |          | 4       |       | _    |      |         |        | +       |     |
| Creek Palm<br>Goat's Foot Morning | Hydriastele wendlandiana        |         |          | -   |           |        |      |        |        |       | _        |       |      |         |          |      |      |           |        |          | 4       |       | 5    |      |         |        | +       |     |
|                                   |                                 |         |          |     |           |        |      |        |        |       |          |       | 100  |         |          |      |      |           |        |          |         |       |      |      |         |        |         |     |
| Glory/creeper                     | Ipomea pescaprae                |         |          |     |           |        |      |        |        |       |          |       | 100  |         |          |      |      |           |        |          |         |       |      |      |         |        |         |     |
| Bandicoot Berry                   | Leea indica                     |         |          |     |           |        |      |        |        |       |          |       |      |         |          |      |      |           |        |          | 100     |       |      |      |         |        |         |     |
| Qld Fan Palm                      | Licuala ramsayii                |         |          |     |           |        |      |        |        |       |          |       |      |         |          |      |      |           |        |          | 100 100 |       | 50   |      |         |        |         |     |
| Walking Stick Palm                | Linospadix minor                |         |          |     |           |        |      | 200    |        |       |          |       |      |         |          |      |      |           |        |          |         |       |      |      |         |        |         |     |

| ay Integrated Resort Development | 27 |
|----------------------------------|----|
| e 6.2f Revegetation Trial        |    |



| Seed Collection for Revegetation Ella Bay 2 | 201 | 0 |
|---------------------------------------------|-----|---|
|---------------------------------------------|-----|---|

| Seed Collection for Revegetation Ella Bay 2010 |                             |         |          |                      |                  |                          |                      |                   |            |                    |                         |                      |             |
|------------------------------------------------|-----------------------------|---------|----------|----------------------|------------------|--------------------------|----------------------|-------------------|------------|--------------------|-------------------------|----------------------|-------------|
| Seed Collection                                |                             |         |          |                      |                  |                          |                      |                   |            |                    |                         |                      |             |
| Common Name:                                   | Scientific Name:            | January | February | March                | April            | May                      | June                 | July              | August     | September          | October                 | November             | December    |
| Macaranga Tree                                 | Macaranga tanarius          |         |          |                      |                  |                          |                      |                   |            | 250                |                         | 500                  |             |
| Native Lasiandra                               | Melastoma malabathricum     |         |          |                      |                  |                          |                      |                   |            |                    | 5000                    |                      |             |
| Turn-in-the-Wind                               | Mallotus paniculatus        |         |          |                      |                  | 2000                     | 1000                 |                   |            |                    |                         |                      |             |
| Yellow Evodia                                  | Melicope bonwickii          |         |          |                      |                  |                          |                      |                   |            | 500                |                         |                      |             |
| Corkwood                                       | Meliocope elleryana         |         |          | 400                  |                  |                          |                      |                   |            |                    |                         |                      |             |
| Little Evodia                                  | Meliocope rubra (meullerii) |         |          | 2000                 |                  |                          |                      |                   |            |                    |                         |                      |             |
| Pongamia                                       | Millettia pinnata           |         |          | 400                  |                  |                          |                      |                   |            |                    |                         |                      |             |
| Red Bell                                       | Mischocarpus exangulatus    |         |          |                      |                  |                          | 105                  | 200               |            |                    |                         |                      |             |
| Cheese fruit                                   | Morinda citrifolia          |         |          | 65 50000 240 120     | 240              | 500                      | 500                  |                   |            |                    |                         | 200                  | 200 80      |
| Native Banana                                  | Musa banksii                |         |          |                      |                  | 200                      |                      |                   |            |                    |                         |                      |             |
| Native Nutmeg                                  | Myristica insipida          |         |          |                      |                  |                          |                      |                   |            | 50                 |                         |                      |             |
| Leichhardt                                     | Nauclea orientalis          |         |          | 50000                |                  |                          |                      |                   |            |                    |                         |                      |             |
| Rainforest Pandan/Urchin-                      | Pandanus monticola          |         |          |                      | 1000             |                          |                      | 500               |            |                    |                         | 50                   |             |
| Swamp Pandan                                   | Pandanus solmslaubachii     |         |          |                      |                  |                          |                      |                   |            |                    | 50                      | 40                   |             |
| Rusty Pittosporum                              | Pittosporum ferrugineum     |         |          |                      |                  |                          |                      |                   |            |                    | 400                     |                      |             |
| Solitaire Palm                                 | Phytosperma elegans         |         |          | 100 500              | 100 50           | 100 50                   | 500 50               | 50                |            | 1000               |                         |                      |             |
| Coastal Premna                                 | Premna serratifolia.        |         |          | 500                  | 100              |                          |                      |                   |            |                    |                         |                      | 200         |
| Sea Lettuce/beach cabbage                      | Scaveola taccada            |         |          | 12 5000 600          |                  | 2000                     | 600                  |                   |            |                    |                         | 600 800              | 600 500     |
| Mission Beach Satinash/Onion                   |                             |         |          |                      |                  |                          |                      |                   |            |                    |                         |                      |             |
| Wood                                           | Syzigium aliiligium         |         |          |                      |                  |                          | 200 50 300           |                   |            |                    |                         |                      |             |
| White Apple                                    | Syzygium forte              |         | 250      |                      |                  |                          |                      |                   |            |                    |                         |                      |             |
| Brown Damson                                   | Terminalia arenicola        |         |          |                      |                  | 5                        | 00 1000              | 2                 | 00         |                    |                         |                      |             |
| Sea Almond                                     | Terminalia catappa          |         |          | 50 200 500 350       | 500 300          | 10                       | 200 50 50            | 50                | 60         |                    |                         |                      |             |
| Mueller's Damson                               | Terminalia muelleri         |         |          |                      |                  |                          |                      | 30 250            |            |                    |                         |                      |             |
| Damson Plum                                    | Terminalia sericocarpa      |         |          | 400                  |                  |                          |                      | 2                 | 50         |                    |                         |                      |             |
| Northern Cottonwood                            | Thespesia populnea          |         |          | 200                  |                  | 150 250                  |                      | 50 3              | 00         |                    | 200                     | 200                  |             |
| Poison Peach                                   | T rema orientalis           |         |          |                      |                  |                          | 600                  |                   |            |                    |                         |                      |             |
| Golden Penda                                   | Xanthostemon chrysanthus    |         |          |                      |                  |                          |                      |                   |            |                    |                         |                      |             |
| Total Seeds                                    | 522,966                     |         | 2330 0   | 962 318100 2990 4720 | 2990 7230 1700 0 | 8140 1580 4475 14810 125 | 00 9230 26600 1235 0 | 0 730 680 1000 39 | 72 11500 0 | 0 6850 0 11080 113 | 50 1766 15350 11200 386 | 5 90 6000 12940 2470 | 1150 1381 0 |

| ay Integrated Resort Development | 28 |
|----------------------------------|----|
| e 6.2f Revegetation Trial        |    |